SKD-200定氮仪的实验报告

实验目的: 验证沛欧SKD-

200型凯氏定氮仪对低蛋白量样品的检测准确度与精确度

实验设计人: 沙金 **实验执行人:** 沙金 **实验时期:** 2010-3-11

仪器与试剂:

凯氏定氮仪(SKD-200,上海沛欧分析仪器有限公司)

精密分析天平(FA2004,上海精科天平厂)

通风橱

水槽

500mL三角瓶若干

25mL酸式滴定管

50mL量筒

1mL移液器与枪头

10mL离心管

药匙

称量纸

固体硫酸钾/硫酸铜催化剂=3:1(w/w)

样品1: 0.5mg/mL BSA 2mL (containing 50% glycerol)

样品2: 0.5 mg/mL 大豆浸提液 2mL (containing 50% glycerol)

样品3: 标准硫酸铵 (1mg N/mL)

空自对照: saline (containing 50% glycerol)

浓硫酸(AR)

35% NaOH

2% H₃BO₃

混合指示剂: 0.1% 溴甲酚绿乙醇溶液: 0.1% 甲基的红乙醇溶液=5:1

- 0.1N NaOH
- 0.1N HC1
- 0.01037N 滴定用HC1

操作步骤:

1. 消化:

将预先称量好的固体硫酸钾/硫酸铜催化剂粉末约6g(可适当加量)小心加入洗净干燥的消化管底部;分别将样品1、2和空白对照(约2mL)各两份用分析天平差减法直接倒入消化管底部,记录各组重量;用量筒小心称取浓硫酸16mL加入各消化管底部。将消化管放在管架上,放入消化炉,启动通风橱。设置消化温度时间曲线:170℃(根据样品碳化和沸腾的情况,可适当提高或降低预消化温度,并尽量避免样品碳化沸腾挂壁以提高检测准确度),30min——250℃,10min——

370℃(为保证消化效果,可根据情况适当提高至400℃以上),120min。当消化管内出现稳定的恒沸白色酸雾并回流时,可盖上消化管盖以减少硫酸损失。

当样品被消化为明亮的蓝绿色或绿色液体时,即可停止消化,待其冷却至室温后,取出蒸馏,关闭通风橱。

2. 蒸馏:

向凯氏定氮仪的三个储液桶中分别加入足量的35%NaOH、2%H₃BO₃和蒸馏水(根据处理样品量,至少IL),旋紧储液桶盖子。开机,打开循环水,不放入样品,预蒸馏2min。向样品管中小心加入20mL蒸馏水以稀释硫酸,待其变为明亮的蓝色溶液时,小心放入蒸馏架,卡紧卡槽时注意将消化样品管口卡紧以防止氨蒸气流失;向500mL接收三角瓶中加入少量(约0.6mL)混合指示剂,并设定加硼酸12s,加碱8s,蒸馏8—

9min,保存设置后启动仪器。当氨蒸气随冷凝水流出时(注意氨蒸气管出口浸没于接收三角瓶的硼酸溶液中),接收瓶中的硼酸溶液会由玫红色变为蓝色,待蒸馏完毕,用蒸馏水将氨蒸气管出口的残液冲洗入接收瓶后取出待测。将样品管取出,小心倒入水槽,并及时清洗。放入下一个样品管和接收瓶,重复以上操作。蒸馏完毕后,关闭循环水。待蒸馏水冷却后放出。如短时间内不再使用定氮仪,应用蒸馏水替换酸液和碱液,重复加酸加碱过程以清洗酸碱管路,维护设备。

3. 滴定

用0.1N

NaOH、0.1NHC1、蒸馏水分别润洗酸式滴定管各三次,最后用0.01037N滴定用标准HC1润洗两三次。加入0.01037N滴定用标准HC1,并小心放液至0刻度。开始滴定,左手控制滴定速度,右手不断摇动混匀三角瓶中溶液。(可预先对样品消耗盐酸量有一个大致的估计,即每毫升0.01N盐酸可滴定约0.14mg氮)临近滴定终点时溶液开始由蓝色变为蓝灰色,在最后一滴或半滴时微微呈现紫红色。视线与滴定管水平时读取并记录盐酸消耗量。用0.01037N滴定用标准HC1补满至0刻度后,可滴定下一个样品。

实验结果:

1. 各组样品取样量:

	空白对照	BSA (0.5mg/mL)	大豆浸提液(约0.
			5mg/mL)
取样前 (g)	9.823	9. 191	9. 702
第一次取样后(g	7. 391	6. 639	7.016
)			
第二次取样后(g	4. 359	4. 506	4. 316
)			
第一次取样量(g	2. 432	2. 552	2. 686
)			
第二次取样量(g	3.032	2. 133	2. 700
)			
第一次取样量(m	0.00	1. 1285	1. 1878
g)			
第二次取样量(m	0.00	0. 9432	1. 1940

注: 甘油密度1.2613g/mL, 生理盐水密度1.00 g/mL, 则样品溶液密度1.1307g/mL 蛋白取样量 (mg) = 取样量 (g) / 样品溶液密度 X 0.5 mg/mL

2. 各组样品消耗盐酸量:

· <u> 台组什吅仴杙益敗里:</u>			
	空白对照	BSA (0.5mg/mL)	大豆浸提液(约0. 5mg/mL)
第一次取样量(g	2. 432	2. 552	2. 686
第二次取样量(g	3.032	2. 133	2. 700
第一次盐酸消耗量(mL)	0.40	2.04	2. 36
第二次盐酸消耗量(配)	0.45	1.64	2. 44
第一次滴定氮量(mg)	0.058	0. 296	0. 343
第二次滴定氮量 (mg)	0.065	0. 238	0. 354
平均氮含量(mg/m L)	0.026	0. 129	0. 146
平均蛋白含量(mg/mL)	0	0. 577	0.724
检测准确度		高于真实值15.4%	高于真实值约44. 7%
检测精确度(SD%)	$\pm 7.26\%$	$\pm 2.75\%$	$\pm 1.99\%$

注: 每消耗1mL0.01N的盐酸相当于0.14mg氮; 动物胶K=5.6 (N=18.0%), 大豆制品K=6.0 (16.7%)。

讨论:

从检测结果看,当测量氮含量为0.18mg时,标准偏差控制在±3%以内,而空白对照的含氮量进一步下降为0.03mg时,标准偏差仍控制在±10%以内,实验结果重复性较为理想。但两组实验测量值均大于真值,分析原因:1)BSA组高15.4%,怀疑实验场所距动物房较近,造成结果偏高。2)大豆浸提液组高44.7%,怀疑不仅有1)的原因,而且浸提液中含有较高的非蛋白氮干扰,建议将浸提蛋白沉淀后再以凯氏定氮法测量。

另:以标准硫酸铵检测的蒸馏回收效果,实验结果表明:当氮含量为1mg时,以1500w蒸馏器蒸馏8min,平均氮回收率为96.9%;以1500w蒸馏器蒸馏9min,平均氮回收率可达100%,蒸馏回收效果理想。建议对于低蛋白含量样品测量而言,降低蒸馏器功率,并适当延长蒸馏时间可进一步改善回收率,从而使结果重复性更好

注: 作者系上海我武生物公司研发部生化博士